39 research outputs found

    Distributed Interior-point Method for Loosely Coupled Problems

    Full text link
    In this paper, we put forth distributed algorithms for solving loosely coupled unconstrained and constrained optimization problems. Such problems are usually solved using algorithms that are based on a combination of decomposition and first order methods. These algorithms are commonly very slow and require many iterations to converge. In order to alleviate this issue, we propose algorithms that combine the Newton and interior-point methods with proximal splitting methods for solving such problems. Particularly, the algorithm for solving unconstrained loosely coupled problems, is based on Newton's method and utilizes proximal splitting to distribute the computations for calculating the Newton step at each iteration. A combination of this algorithm and the interior-point method is then used to introduce a distributed algorithm for solving constrained loosely coupled problems. We also provide guidelines on how to implement the proposed methods efficiently and briefly discuss the properties of the resulting solutions.Comment: Submitted to the 19th IFAC World Congress 201

    A distributed primal-dual interior-point method for loosely coupled problems using ADMM

    Full text link
    In this paper we propose an efficient distributed algorithm for solving loosely coupled convex optimization problems. The algorithm is based on a primal-dual interior-point method in which we use the alternating direction method of multipliers (ADMM) to compute the primal-dual directions at each iteration of the method. This enables us to join the exceptional convergence properties of primal-dual interior-point methods with the remarkable parallelizability of ADMM. The resulting algorithm has superior computational properties with respect to ADMM directly applied to our problem. The amount of computations that needs to be conducted by each computing agent is far less. In particular, the updates for all variables can be expressed in closed form, irrespective of the type of optimization problem. The most expensive computational burden of the algorithm occur in the updates of the primal variables and can be precomputed in each iteration of the interior-point method. We verify and compare our method to ADMM in numerical experiments.Comment: extended version, 50 pages, 9 figure

    Robust Stability Analysis of Sparsely Interconnected Uncertain Systems

    Full text link
    In this paper, we consider robust stability analysis of large-scale sparsely interconnected uncertain systems. By modeling the interconnections among the subsystems with integral quadratic constraints, we show that robust stability analysis of such systems can be performed by solving a set of sparse linear matrix inequalities. We also show that a sparse formulation of the analysis problem is equivalent to the classical formulation of the robustness analysis problem and hence does not introduce any additional conservativeness. The sparse formulation of the analysis problem allows us to apply methods that rely on efficient sparse factorization techniques, and our numerical results illustrate the effectiveness of this approach compared to methods that are based on the standard formulation of the analysis problem.Comment: Provisionally accepted to appear in IEEE Transactions on Automatic Contro

    Distributed Robust Stability Analysis of Interconnected Uncertain Systems

    Full text link
    This paper considers robust stability analysis of a large network of interconnected uncertain systems. To avoid analyzing the entire network as a single large, lumped system, we model the network interconnections with integral quadratic constraints. This approach yields a sparse linear matrix inequality which can be decomposed into a set of smaller, coupled linear matrix inequalities. This allows us to solve the analysis problem efficiently and in a distributed manner. We also show that the decomposed problem is equivalent to the original robustness analysis problem, and hence our method does not introduce additional conservativeness.Comment: This paper has been accepted for presentation at the 51st IEEE Conference on Decision and Control, Maui, Hawaii, 201

    Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    Full text link
    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of solving centralized robust stability analysis techniques, privacy requirements in the network can also introduce further issues. In this paper, we utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment.Comment: 3 figures. Submitted to the 19th IFAC world congres

    Medical Waste Regulation: Recommendations for Cleaning Up the Mess

    Get PDF
    In many applications, design or analysis is performed over a finite frequency range of interest. The importance of the H2/robust H2 norm highlights the necessity of computing this norm accordingly. This paper provides different methods for computing upper bounds on the robust finite-frequency H2 norm for systems with structured uncertainties. An application of the robust finite-frequency H2 norm for a comfort analysis problem of an aero-elastic model of an aircraft is also presented
    corecore